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Abstract
Turbulence in compressible plasma plays a key role inmany areas of astrophysics and engineering.
The extreme plasma parameters in these environments, e.g. highReynolds numbers, supersonic and
super-Alfvenic flows, however,make direct numerical simulations computationally intractable even
for the simplest treatment—magnetohydrodynamics (MHD). To overcome this problemone can use
subgrid-scale (SGS) closures—models for the influence of unresolved, subgrid-scales on the resolved
ones. In this workwe propose and validate a set of constant coefficient closures for the resolved, com-
pressible, idealMHDequations. The SGS energies aremodeled by Smagorinsky-like equilibrium clo-
sures. The turbulent stresses and the electromotive force (EMF) are described by expressions that are
nonlinear in terms of large scale velocity andmagnetic field gradients. To verify the closures we con-
duct a priori tests over 137 simulation snapshots from twodifferent codes with varying ratios of ther-
mal tomagnetic pressure (β = 0.25, 1, 2.5, 5, 25p ) and sonicMach numbers ( =M 2, 2.5, 4s ).

Furthermore, wemake a comparison to traditional, phenomenological eddy-viscosity andα β γ− −
closures.We find onlymediocre performance of the kinetic eddy-viscosity andα β γ− − closures,
and that themagnetic eddy-viscosity closure is poorly correlatedwith the simulation data.Moreover,
three offive coefficients of the traditional closures exhibit a significant spread in values. In contrast,
our new closures demonstrate consistently high correlations and constant coefficient values over time
and over thewide range of parameters tested. Important aspects in compressibleMHD turbulence
such as the bi-directional energy cascade, turbulentmagnetic pressure and proper alignment of the
EMF arewell described by our new closures.

1. Introduction

Turbulence is ubiquitous in astrophysical plasmas, ranging from coronalmass ejections and stellar winds [1],
through star formation inmolecular clouds [2], to the gas in the interstellar [3] and intraclustermedium.While
experimental setups [4] become increasinglymore realistic, they are still far away from the regime acting in such
extreme conditions. For numerical simulations it is computationally too expensive (if even possible) to capture
the entire range of physical processes fromplasma kinetics to the integral scales of turbulence. In an
astrophysical context, one has to further contendwith the additional complications brought about by high
compressibility and the accompanying supersonic and super-Alfvenicmotion.

Possible ways to circumvent the infeasibility of direct numerical simulations are the use of calculations based
onmean-field theories or large-eddy simulations [5]. These simulations only resolve the energy containing large
scale dynamics and require a subgrid-scale (SGS)model to account for unresolved effects.While a lot of research
has been successfully carried out in the realmof hydrodynamics [6], compressiblemagnetohydrodynamic SGS
closures are essentially unexplored. Previous research ismainly based on the concept of turbulent dissipation in
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incompressible flows [7–10]. They expand the idea of a turbulent eddy-viscosity to an additional eddy-resistivity
in the induction equation and propose different phenomenologicalmodels. Even though thesemodels are then
evaluated a posteriori, a general verification and justification a priori has so far only been considered for a single
incompressible dataset [11]. Thus, our objective is to establish the validity of closures for the filtered,
compressiblemagnetohydrodynamics (MHD) equations by coarse-grainingmultiple datasets fromhigh-
resolution simulations of statistically homogeneous, forcedMHD turbulence.

In general, the effect offinite resolution in numerical simulations can bemimicked by applying a low-pass
filter to the standard, idealMHDequations. This is achieved by convolving the equationswith a suitablefilter
kernelG. See e.g. Garnier et al [6] for details on the properties of low-pass filtering and the conditions thatG
needs to satisfy. For a homogeneous, isotropic, stationary kernel, under periodic boundary conditions [12] the
equations take the following form
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The units of themagnetic fieldB incorporate π1 4 . An overbar □ denotes4filtered and a tilde □͠mass-
weighted filtered quantities [12]. For instance, thefiltered density field is given by ρ ρ= ∗G , while themass-
weighed filtered velocity field is ρ ρ=∼u u . In this formalism, allfiltered primary quantities, density ρ , velocity
∼u ,magnetic fieldB ,and thermal pressureP are presumed to be known and directly accessible. Due to the
introduction ofmass-weighted filtering the only remaining terms that require closure are the SGS stress τ and
the electromotive force (EMF),.They are analytically expressed [10] as

= × − ×∼ u B u B and (1)

τ τ τ
δ

= − + −( )B B
2

, withij ij ij
iju b 2 2

τ ρ τ≡ − ≡ −∼ ∼( ) ( )u u u u B B B Band . (2)ij i j i j ij i j i j
u b

The SGS stress tensor can be decomposed into thewell-known turbulent Reynolds stress τu, a turbulentMaxwell
stress τb and amagnetic pressure term.

Furthermore, the definitions of the SGS energies are obtained fromapplying the filter to the totalfiltered
energy densityE , which can be decomposed into the contribution due to resolved fields only and a remainder,
designated as SGS energy
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It is important to point out that in general the filtering operator is not a Reynolds operator, in particular
□ ≠ □. It follows that SGS terms, likeESGS, carry information not only about the interactions between
unresolved fields but also about cross-scale interactions between unresolved and resolved fields. In addition to
this, the turbulentmagnetic pressure is identical to themagnetic SGS energyEsgs

b and both kinetic andmagnetic

SGS energies are directly given by τ= ( )E2 Trsgs
u u and τ= ( )E2 Trsgs

b b , i.e. they constitute the isotropic parts of

the respective SGS tensors. Following the general tensor decomposition, the deviatoric, traceless parts are then
given by τ τ δ τ= −□ □ □

ij ij ij kk
* 1

3
.

2. Traditional closures

In hydrodynamics, the traceless part of the SGS stress tensor is commonly closed bymeans of the eddy-viscosity

hypothesis  τ ν ρ= − * 2ij ij
u u * in analogy to themolecular viscosity term in themomentum equation, where

 ≡ +∼ ∼ ( )u uij i j j i
1

2 , , is the filtered kinetic rate-of-strain tensor. This introduces a turbulent kinetic eddy-

viscosityν Δ ρ= ν ( )C Eu u
sgs
u 1 2

which is proportional to a characteristic velocity, commonly given by the kinetic

SGS energy, and a characteristic length scaleΔ. This closure has already been applied directly toMHD [7, 13] by

4
Throughout the paper the symbol □ is used as a generic placeholder for variables.□ designates closure expressions. Furthermore, we

employ Einstein summation convention and □i k, is identifiedwith the kth partial derivative of the ith component of □.
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neglecting themagnetic contribution τb in themomentum equation. A turbulentmagnetic viscosity

ν Δ= ν ( )C Eb b
sgs
b 1 2

was used in [10] with the closure

τ ν= − 2 ,ij ij
b* b

where ≡ + ( )B Bij i j j i
1

2 , , is the filteredmagnetic rate-of-strain tensor.

The SGS energies can either be determined by individual evolution equations, where several terms again
require closure, or by an instantaneous closure. Smagorinsky [14] introduced such an instantaneous closure in
pure incompressible hydrodynamics ( =B 0) by assuming the SGS energy flux to be in equilibriumwith the rate
of dissipation

 Δ ρ= ∼E C * . (3)sgs
u

E
u 2

2

Here, ∣ ∣ ≡∼  * 2 ij ij
* * denotes the rate-of-strainmagnitude.

Finally, the EMF is commonlymodeled (e.g. [7, 8, 10, 13]) by variations of [15]

 Ωα β γ= − + ͠ B J ,

with resolved current = ×J B and vorticity Ω = × ∼͠ u . The coefficients α, β, and γ are typically related to
theα-effect, turbulent resistivity and turbulent cross helicity, respectively. The commonly used closures for these
coefficients

α β ρ γ= = =α β γ
  C t H C t E C t W, , ,turb turb sgs turb

are based on dimensional arguments, with turbulent cross helicity = − ∼u B u BW · · , residual helicity

Ω Ωρ∼ − − − ∼͠( ) ( )J B J B u uH · · · · , and timescale Δ ρ=
−( )t Eturb sgs

1 2
.

3.Nonlinear closures

In our new approachwe adopt the compressible hydrodynamic nonlinear closure for the kinematic deviatoric
stress tensor τ *u from [16], similar to the incompressible one from [17].We propose the straightforward
extension toMHDwith
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The tensorial structure, e.g. ∼ ∼u ui k j k, , , can be obtained by a Taylor expansion discarding termswith2nd and
higher order gradients of the resolved fields. The overall normalizationwith the SGS energies comes from the
constraint that the SGS stresses vanish in laminarflows.

Applying the nonlinearity idea to the EMF generalizes the closure proposed by [11] to the compressible
regime

 ε Δ= ∼ C u B . (6)i ijk j s k snl
2

, ,

The closure explicitly preserves the anti-symmetry between velocity andmagnetic field in,which in turn helps
in capturing their relative geometry.

Finally, to complete the set of nonlinear closure equations, we use the Smagorinsky expression for the
turbulent kinetic energy (3) and propose an analogous extension to themagnetic part

 Δ= E C . (7)sgs
b

E
b 2 2

Here, the turbulentmagnetic energy is proportional to themagnetic rate-of-strainmagnitude

∣ ∣ ≡  2 ij ij . There are two advantages of closingEsgs
u andEsgs

b separately and not jointly via the total

SGS energy. First, there is no additional need to close the often neglected turbulentmagnetic pressure, as it is
given byEsgs

b . Second, the individual energies provide closures to the isotropic parts of the turbulent stress tensors

τu and τb.
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4. Validationmethod

In order to evaluate the proposed closures, we perform an a priori comparison using simulation data obtained
from two, grid-basedMHDcodes (ENZO[18] and FLASHV4[19]). This way the results are less likely to hinge on
the particulars of the numerical implementation. In both cases we follow the evolution of a compressible,
isothermal fluid in a cubic boxwith resolution of 5123 grid cells and periodic boundary conditions, starting from
uniform initial conditions. In ENZOwe use an ideal equation of state with adiabatic exponent κ = 1.001 in order
to approximate isothermal gas. ENZO is afinite-volume code, i.e. the evolution equations are evaluated in integral
formby solving a Riemann problem for themass,momentum and energy flux through cell walls. This allows for
the conservation ofMHD invariants (e.g. energy) tomachine precision.We use aMUSCL-Hancock scheme
[20] (a second-order accurate Godunov extension)with second-order Runge–Kutta time integration and
Harten–Lax–van Leer (HLL) Riemann solver (a two-wave, three-state solver) to solve the idealMHDequations.
The FLASHV4 code is similar to ENZO (second-order accurate in space and time), but uses the positive-definite
HLL3RRiemann solver [20]. Another difference is that FLASHV4 uses a polytropic equation of state to keep the
gas exactly isothermal.Moreover, explicit kinematic viscosity andmagnetic resistivity terms are included in the
momentum, energy, and induction equations.We set the kinematic andmagnetic Reynolds numbers to

= =Re Rm 3780. Consequently, themagnetic Prandtl number =Pm Rm Re is unity. For details on the
numericalmethods used in FLASHV4, including viscous and resistive dissipation, see [21] and [22]. Both codes
employ divergence cleaning [23] tomaintain =B· 0. A state of homogeneous and isotropic turbulence is
reached by supersonic stochastic driving in themomentum equation (given by anOrnstein–Uhlenbeck process)
at small wave-numbers, similar to [24, 25]. Thus, the forcing field is evolving in time and space. The associated
large auto-correlation time-scaleT of the forcing translates to the eddy turnover time of the largest, energy-
containing eddies. It is therefore the chosen unit of time in the following.

We explore a range of parameters. The initial strength of themagnetic field is set by the plasma βp—the ratio

of thermal tomagnetic pressure. Thefinal sonicMach numberMs is determined by the forcing amplitude. For
the ENZO simulationswe have initial β = 0.25, 2.5, 25p , with ≈M 2.5s after ≈t T2 turnover times. The

FLASHV4 simulations reach ≈M 4, 2s for initial β = 1, 5p , keeping instead constant AlfvenicMach number

≈M 3a .We discard all initial data affected by transients (before a simulation time of =t T2 ) and analyze
consequent snapshots taken approximately in intervals of T0.15 and T0.1 for the ENZO and FLASHV4 datasets,
respectively.

The analysis begins with the application of a low-pass Gaussian (test) filter to the equations ofmotion. In the
context of the closures we investigate, filtered quantities (i.e. density, velocity, andmagnetic field) are
interpreted as resolved, while the remainders represent the unresolved small scales.We can then compute τ and
 both directly from (1) and (2), and from their respective traditional and nonlinear closures.

The determination of the length-scale of the filter bears some consideration. It needs to fall within an
intermediate range of length scales, away from the particular effects of both the large-scale forcing and the small-
scale dissipation. The largest scale of the system is the full box size L and corresponds to thewavenumber n=1,
while the smallest scale is given by theNyquist wavenumber = =n N 2 256Nyq for the linear numerical
resolutionN=512 grid cells. The turbulence injectionwavenumber is =n 2inj (corresponding to half the box
sizeL 2) in both codes, which is why the energy spectra, as illustrated infigure 1, peak there. Thefigure shows
themean kinetic and total (kinetic plusmagnetic) energy spectra as a function of wavenumber. Since the
stochastic forcing is implemented only in themomentum equation both for ENZO and FLASHV4, the kinetic
energy spectrum exhibits themost direct imprint of the forcing itself. Conversely, the total energy spectrum
carries the overall effect of the small-scale dissipation through both kinetic andmagnetic channels. Figure 1
demonstrates that our simulations produce approximate power-law scaling within a narrow range of
wavenumbers, which is indicative of self-similar turbulent fluctuations [26]. This can be interpreted as inertial
range dynamics, although the nature of the inertial range in compressibleMHD turbulence is still not fully
understood [27–30]. Furthermore, this range separates the forcing scale and the dissipation scales and is not
affected by numerical diffusion in the absence of a bottleneck effect as demonstrated by [31]. The vertical dotted
line infigure 1 indicates our chosen filter length scale, corresponding to Δ = 16 grid cells or wavenumbernfilter

= Δ =N (2 ) 16. This filter scale falls within the range of the self-similar power-law range for both the kinetic and
total energy spectra. This is whywe use this ideal scale for ourfilter in the following analysis.

Additionally, this provides themotivation to treat data fromboth simulations on equal footing, even though
FLASHV4 has explicit viscosity and diffusivity while ENZO solves the idealMHDequation, subject to numerical
dissipation only.

In order to incorporate coordinate independence, a scalar field is chosen for comparison, the SGS energy
fluxΣ, i.e. the term responsible for the transfer of SGS energy between resolved and unresolved scales. Its
components associatedwith the Reynolds andMaxwell stresses and the EMF areΣ τ= ∼

Su
ij
u

ij,Σ τ= ∼
Sb

ij
b

ij and
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Σ =  J· , respectively (see appendix of [10] for the detailed SGS energy equation).Here, we substitute (1) and

(2) to obtain exactfluxesΣ□ andmatch these tomodel fluxes Σ □
that employ the corresponding closures. For

example, in the case of the eddy-viscosity closure for the deviatoric turbulent Reynolds stress tensor we compare
the exactflux

  Σ τ ρ δ= = − − −∼ ∼ ∼ ∼ ( ) ( )u u u u u u u u*
1

3
(8)ij ij i j i j ij k k k k ij

u u* ⎜ ⎟⎛
⎝

⎞
⎠

with themodelflux

   Σ τ ν ρ Δ ρ= = − = − ν  ( )C E* * * . (9)ij ij
u u* u

2
u

sgs
u 1 2

2

On the one hand, the comparison involves the determination of the constant (in space and time), dimensionless
closure coefficients □

□C . They are computed individually for each snapshot byminimizing the error betweenΣ□

and Σ □
in the least-square sense. This allows to further test the constancy of the coefficients with respect to time

and plasma parameters. On the other hand, the general performance of the closure is gauged by computing the

Pearson correlation coefficient ofΣ□ and Σ □
, where the obtained closure coefficients are substituted in.

Several assumptions should be pointed out concerning this validation technique. Firstly, the simulation data
we have available for comparison fall short of realistic astrophysical parameters, e.g. with regards to Reynolds
numbers and resolution. In that sense, it would be interesting to use higher resolution direct numerical
simulation data or three-dimensional observations or experimental results. The problem is that experimental
data for supersonic compressible turbulent plasmas are not available and obtaining realistic Reynolds numbers
is computationally challenging for astrophysical parameters. However, as seen from figure 1, the data we have
are sufficiently well resolved for our analysis. Secondly, in choosing the SGS energyfluxΣ, as a diagnostic
variable, we implicitly assume that in the context of homogeneous and isotropic turbulence the turbulent

transport (encoded by terms of the form τ∼( )u· · and × ( )B· ) averages out to zero on subgrid scales.

This assumption can nevertheless be easily relaxed by incorporating further diagnostic variables. Finally, we
have focused on the SGS energy since it increasesmonotonically with the strength of turbulence regardless of the
type of turbulence (e.g. compressive or solenoidal, weak or strong, etc). As an extension, the other two quadratic
MHD invariants—themagnetic helicity and cross-helicity,may further highlight distinct turbulence properties
present in particular flow configurations. These should be kept inmind as further avenues of investigation, once
a preferred closure has been identified by the described validation technique.

Figure 1.Kinetic (a) and total (b) energy spectrum for each dataset, averaged over the time between T2 and T5 . The kinetic energy is
calculated from the Fourier transformof ρ u.
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5. Results

Thefitting results for the SGS stress tensors’ energyflux are given infigure 2 for the isotropic components and
figure 3 for the deviatoric components.

The isotropic parts of τu and τb are given by the SGS energies τ =□ □Eii
2

3 sgs from (3) and (7). Both the

coefficient values of kinetic part (figure 2(a) top panel) and themagnetic part (figure 2(b) top panel), have a
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Figure 2.Model coefficient values (top panels) and correlations (bottompanels with—median) fromfittingmodel energy flux Σ □
E

 τ= □ ij ij to exactflux for the isotropic parts of the SGS stress tensors. These are given by the respective energymodel in the trace
elements τ =□ □( )Eii

2

3 sgs . Each panel contains the joint data of all simulations and each snapshot is represented by amarker. Values are

given in table 1.

Figure 3.Model coefficient values (top panels) and correlations (bottompanels with—median) fromfittingmodel energy flux Σ □

 τ= □ ij ij to exactflux for the nonlinear closure (left panels) and eddy-viscosity closure (right panels). Each panel contains the joint
data of all simulations and each snapshot is represented by amarker. Values are given in table 1.
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small spreadwithin a factor of two across time and all simulations. Furthermore, closure and data are highly
correlated (bottompanels) with amedian correlation coefficient of 0.90 and 0.91, respectively.More detailed
numerical values of these and all following coefficients and correlations are listed in table 1.

The differences in the deviatoric parts τ *u infigure 3(a) and τ *b infigure 3(b) between the nonlinear and the
eddy-viscosity closures are apparent.While our nonlinear closure exhibits approximately constant coefficient
values and correlations over time in all simulations, the kinetic eddy-viscosity closure shows a correlation
weaker by≈0.2 and bigger spread in coefficient values.Moreover, themagnetic eddy-viscosity closure is
effectively uncorrelatedwith the simulation data and the coefficients can even switch sign at different times. The
performance of the different closures can be understood from figure 4, wherewe plot the energy flux
distributionsΣ *u andΣ *b for a single snapshot. A negative fluxΣ <* 0u corresponds to a forward energy
cascade—the transfer of energy from resolved to subgrid scales, becauseΣ *u appears as a sink term in the SGS
kinetic andmagnetic energy evolution equations and as a source term in the respective resolved energy
equations. Conversely, a positive flux corresponds to an inverse energy cascade, i.e. transport of energy from
subgrid to resolved spatial scales.The general distribution of the actual fluxes in figure 4 is representative for all
snapshots. The kinetic SGS energy fluxes are globally almost 1:1 in both directions of the turbulent cascadewith
a slight tendency towards the forward cascade. However, the forward cascade is about 3–10 times stronger
depending on the parameters as indicated by the position of the peaks in the distribution. For this reason, the
kinetic eddy-viscosity closure shows amoderate correlation even though it captures only the forward energy
cascade—from large to small scales. In fact, since under the eddy-viscosity hypothesis the kinetic SGS energy

flux has the form Σ ν ρ= − ∣ ∣∼
S* *u u 2, see (9), anymodel in which the eddy-viscosity νu has a definite signature

with respect to space cannot reproduce a bi-directional energy cascade that is well represented by the nonlinear
closure. In contrast to the kinetic SGS energyflux, the globalmagnetic flux clearly has a preferred direction.
Depending on the parameters, between 60 and 80%of cells have a positive SGSmagneticflux indicating energy

Table 1.Model coefficient overview—coefficient value and energyflux
correlation:median and bounds of the central 90% interval across all
datasets.

Model Coefficient Value Corr Σ Σ□ □
,

⎡⎣ ⎤⎦
Smagorinsky CE

u
−
+0.056 0.015

0.016
−
+0.90 0.04

0.024

CE
b

−
+0.075 0.007

0.034
−
+0.91 0.04

0.021

eddy-viscosity νC u
−
+0.061 0.019

0.045
−
+0.70 0.11

0.13

νC b − −
+0.002 0.03

0.029
−
+0.06 0.06

0.14

nonlinear Cnl
u

−
+0.68 0.09

0.09
−
+0.94 0.04

0.04

Cnl
b

−
+0.77 0.12

0.08
−
+0.90 0.07

0.04

Cnl −
+0.12 0.024

0.013
−
+0.79 0.17

0.07

α β γ− − α
C −

+0.0007 0.0016
0.0010

−
+0.58 0.16

0.06

⎫
⎬⎪

⎭⎪
β
C −

+0.020 0.005
0.009

γ
C − −

+0.005 0.045
0.067

Figure 4.Representative snapshot (ENZO sim.with β = 2.5p at =t T4.44 ) of the energy fluxΣ τ=□ □ij ij distributionwithin the

simulation box.
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transfer from large to small scales. Nevertheless, the difference in strength is less pronounced as the overall
forwardflux is about two times stronger than the backward one. Again, these properties arewell captured by the
proposed nonlinear closurewhereas themagnetic eddy-viscosity closure is poorly correlated in both strength
andmagnitude.Finally, it should be noted, that the nonlinear closures alsowork verywell with the Smagorinsky

energy closure. Exchanging the exact expressions □Esgs in (4) and (5)with 
□

Esgs only slightly reduces the
correlations (max 5%) and the coefficients remain constant up to the second significantfigure (not
plotted here).

Moving on to the EMF, the nonlinear closure outperforms the traditionalα β γ− − closure in almost all
datasets,maintaining a constant coefficient with amedian correlation of 0.79 (figure 5). The traditional closure
exhibits consistently weaker correlations, despite the increasedflexibility of three free coefficients. Only β

C ,

related to the turbulent resistivity term in the EMF, is approximately constant, whereas α
C and γ

C fail to
maintain steady values or consistent signature. The reason for the consistently better correlations of the
nonlinear closure is hinted at infigure 6. This probability density plot of the local alignment between and
demonstrates that the traditional closure is almost randomly aligned (flat distribution)whereas the nonlinear
closure approaches the desired δ-distribution at 0°.

6. Conclusions and outlook

In summary, we have proposed a set of constant coefficient closures for the SGS stress and EMF in the filtered
MHDequations and conducted a priori tests. The tests we performed do show that the newnonlinear closures
perform significantly better than traditional, phenomenological closures with respect to both structural and
functional diagnostics. The tests consist offiltering ENZO and FLASHV4 simulations of homogeneous, isotropic
turbulence and comparing the resulting SGS terms to their respective closures (dependent only on the filtered
fields). All quantities are compared via their contributions to the SGS energy fluxΣ□, where the closure
coefficients are computed by individual least-square fitting. In addition, the alignment for the EMF vector is
investigated. All new coefficients correlate well with the data. They are constant over time and as a direct
consequence the proposed closuresmay be implemented in large-eddy simulationswithout the need for a
computationally expensive dynamical procedure which computes the coefficient values at run time. In addition,
the coefficients remain constant across simulation runs from two different codes and awide range of plasma
parameters, suggesting that the proposed closures capture an underlying physicalmechanism atwork in highly

Figure 5.Model coefficient values (top panels) normalized to the samplemedian (—) and the corresponding Pearson correlation
coefficients (bottompanels) with 90% central interval (- -) for the nonlinear closure (left panels) and the reference closure (right
panels) from energy fluxfitting for . Each panel contains the joint data of all simulations and each snapshot is represented by a
marker. Values are listed in table 1.
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compressible turbulent plasma flows.Moreover, the new closures successfully represent the turbulentmagnetic
pressure, reproduce the bi-directional energy cascade and arewell alignedwith the EMF.We recognize the
slightly lower correlation of the nonlinear closure in the EMF than in the SGS stress counterpart, suggesting
small room for improvement.

Nevertheless, the performance improvement over the traditional closures already supports the
implementation and validation of the new closures in an SGSmodel for large-eddy simulations of compressible
turbulent plasmaflows. These simulationswould then allowus to infer the effect of the proposedmodel on the
large scale flow in practice. Potential applications include accretion disks [32], star-formingmagnetized clouds
[33, 34] and plasmas on cosmological scales [35–40].
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